Control-based approaches to self-adaptive software-intensive systems (SASs) are hailed for their optimal performance and theoretical guarantees on the reliability of adaptation behavior. However, in practice the guarantees are often threatened by model deviations occurred at runtime. In this paper, we propose a \underline{Mo}del-guided \underline{D}eviation \underline{D}etector (MoD2) for timely and accurate detection of model deviations. To ensure reliability, a SAS can switch a control-based optimal controller for a mandatory controller once an unsafe model deviation is detected. MoD2 achieves both high timeliness and high accuracy through a deliberate fusion of parameter deviation estimation, uncertainty compensation, and safe region quantification. Empirical evaluation with three exemplar systems validated the efficacy of MoD2 (93.3% shorter detection delay, 39.4% lower FN rate, and 25.2% lower FP rate), as well as the benefits of the adaptation-switching mechanism (abnormal rate dropped by 29.2%).